A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress.

نویسندگان

  • Gisela Mir
  • Jordi Domènech
  • Gemma Huguet
  • Woei-Jiun Guo
  • Peter Goldsbrough
  • Silvia Atrian
  • Marisa Molinas
چکیده

Expression of plant metallothionein genes has been reported in a variety of senescing tissues, such as leaves and stems, ripening fruits, and wounded tissues, and has been proposed to function in both metal chaperoning and scavenging of reactive oxygen species. In this work, it is shown that MT is also associated with suberization, after identifying a gene actively transcribed in Quercus suber cork cells as a novel MT. This cDNA, isolated from a phellem cDNA library, encodes a MT that belongs to type 2 plant MTs (QsMT). Expression of the QsMT cDNA in E. coli grown in media supplemented with Zn, Cd, or Cu has yielded recombinant QsMT. Characterization of the respective metal aggregates agrees well with a copper-related biological role, consistent with the capacity of QsMT to restore copper tolerance to a MT-deficient, copper-sensitive yeast mutant. Furthermore, in situ hybridization results demonstrate that RNA expression of QsMT is mainly observed under conditions related to oxidative stress, either endogenous, as found in cork or in actively proliferating tissues, or exogenous, for example, in response to H(2)O(2) or paraquat treatments. The putative role of QsMT in oxidative stress, both as a free radical scavenger via its sulphydryl groups or as a copper chelator is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury.

Oxidative stress is involved in the pathogenesis of diabetes and its cardiovascular complications. Metallothionein (MT), a stress-response protein, is significantly increased in the liver and kidney of diabetic animals. We examined whether diabetes also induces cardiac MT synthesis through oxidative damage and whether MT overexpression protects the heart from injury. Diabetes was induced in mic...

متن کامل

Deletion of Metallothionein Exacerbates Intermittent Hypoxia-Induced Oxidative and Inflammatory Injury in Aorta

The present study was to explore the effect of metallothionein (MT) on intermittent hypoxia (IH) induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH...

متن کامل

High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

Metallothionein (MT) is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2) are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by strep...

متن کامل

Metallothionein is expressed in adipocytes of brown fat and is induced by catecholamines and zinc.

Metallothionein (MT) is thought to have an antioxidant function and is strongly expressed during activation of thermogenesis and increased oxidative stress in brown adipose tissue (BAT). Localization and regulation of MT expression in BAT was therefore investigated in rats and mice. Immunohistochemical analysis of BAT from rats exposed to 4 degrees C for 24 h showed that MT and uncoupling prote...

متن کامل

Catalase and Metallothionein genes expression analysis in wheat cultivars under drought stress condition

Drought stress is one of the serious problems that restricted agronomic plant production worldwide. In molecular level, the harmful effect of drought stress is mostly caused by producing of large amount of reactive oxygen species (ROS). Catalase and Metallothionein genes have a crucial role to mope the hydrogen peroxide (H2O2) resulting reducing oxidative damage. In this research the gene expre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 408  شماره 

صفحات  -

تاریخ انتشار 2004